
DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

This document has been submitted to, and reviewed and posted by, the editors of DAC.com. Please recycle if printed.

Virtual Platforms in System-on-Chip Design

Katalin Popovici1 and Ahmed A. Jerraya2
1 The MathWorks, Inc., Natick, MA, USA
2 CEA-LETI, Grenoble, France

Notice of Copyright

This material is protected under the copyright laws of the U.S.
and other countries and any uses not in conformity with the
copyright laws are prohibited. Copyright for this document is
held by the creator — authors and sponsoring organizations —
of the material, all rights reserved.

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 2 of 10

ARTICLE: Virtual Platforms

Virtual Platforms in System-on-Chip Design

Katalin Popovici1 and Ahmed Jerraya2
1 The MathWorks, Inc., Natick, MA, USA
2 CEA-LETI, Grenoble, France

Abstract— Due to continuously increasing system-on-chip design complexity and tight time-to-
market requirements, virtual platforms have become a widely adopted solution to achieve
concurrent hardware/software design for embedded architectures. This article explains the
advantages of using virtual platforms for software design on multicore/multiprocessor system-
on-chip architectures. It also gives a survey of well-known key players in the field: virtual
platform tools providers, design companies, and emerging standards for enabling easy
intellectual property interoperability. Important research directions required to meet the current
challenges of virtual platform design are also summarized.

Index Terms— System-level design, virtual platforms, software design, hardware verification, SystemC, TLM.

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 3 of 10

I. INTRODUCTION

Before multiprocessor system-on-chip (MPSoC) architectures became so complex, the hardware

and software components of an embedded system were designed sequentially. In other words, the
software engineers did not begin development of the operating system, device drivers, and inter-
processor communication protocol stacks until they had a very solid hardware prototype on which to
base their work.

The ever-increasing complexity of MPSoC architectures, along with tight time-to-market
requirements, have now made such a scenario entirely unworkable, resulting in missed market
windows and revenue opportunities. Thus, software development teams need a means to get an early
start on their work, long before the RTL (register-transfer level) of the hardware is finalized.

The International Technology Roadmap for Semiconductors (ITRS) predicts that software
development costs will increase, and by 2013 reach rough parity with hardware costs, even with the
advent of multicore software development tools [1]. It appears that the growing cost of SoC
development is mostly attributable to the embedded software challenge. The 2007 ITRS stated that
“software aspects of IC design can now account for 80% or more of embedded systems development
cost.” Software development and verification methodologies are fairly “ad hoc” and are generally
lacking in sophisticated tools.

As research pushes for better programming models for multiprocessor and multicore embedded
systems, virtual platforms solve one of today’s biggest challenges in these systems: software
development, debug and validation before the hardware board is available, enabling concurrent
hardware/software design. Virtual platforms model the hardware architecture in the form of a simulator,
including processors, memories, communication links and peripherals [3]. They enable engineers to
start developing and testing the software substantially earlier than has been possible in the past.
Furthermore, they can enable system performance analysis and optimization as well as hardware
development and verification.

Hardware design

Functional
specification
(i.e. Simulink)

ISA/RTL
(binary, HDL)

Partitioning
& mapping

Integration

Software design
(device drivers, OS, application)

Virtual platforms
for early hardware/
software integration

Figure 1: Concurrent hardware/software design.

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 4 of 10

Figure 1 illustrates a simplified flow of concurrent hardware/software design, where both software
and hardware are developed in parallel, and the software design uses virtual platforms. The flow starts
with a system-level functional specification. This may be a Simulink functional model simulated using the
corresponding environment. Afterwards, the application is partitioned and mapped to either hardware or
software target implementations, followed by concurrent hardware and software design. The hardware
design produces RTL or gate-level models of the hardware components, usually represented in a
hardware description language such as VHDL or Verilog. The software design produces the binary code
for the software components. Software development may begin as soon as a virtual platform of the
hardware is available, so that the software teams can use the abstracted functional version of the
hardware to continually verify their development.

As the hardware development process progresses and the hardware is further refined, updated
virtual platforms can be generated and distributed to the software development teams. In this manner,
hardware and software development can progress together in lockstep.

The hardware team can verify the design of the hardware components by co-simulating their RTL
descriptions in VHDL/Verilog with the virtual platform model of the system. They can also use the
virtual platform to generate stimuli and testbenches for verification of the hardware components with
an EDA (electronics design automation) simulator.

By performing progressive and early integration of the software with the hardware, various
architectural choices can be taken in both software and hardware worlds, so as to optimize the
system performance, power consumption and memory footprint. Virtual platforms help the designers
to determine tradeoffs in the hardware-software partitioning before the final integration. By analyzing
the performance metrics and power consumption, architects can make decisions in terms of type of
processing units, choice of memories and size of caches, type of communication network, and
peripherals to be included in the chip.

As a result, the software team is able to stay abreast of changes in the hardware development
until they have initial silicon prototypes from the foundry. At that point, with software that has been
updated throughout the hardware design cycle using the virtual platform, final co-verification of the
software and hardware is a relatively easy process. The final integration step consists of verification of
the whole system by running the full binary on the hardware prototype.

II. KEY INDUSTRIAL PLAYERS IN VIRTUAL PLATFORMS TECHNOLOGY AND CHALLENGES

A. Emerging standards

Virtual platform technology is the path that overcomes the challenge of early software design by
taking advantage of a SystemC-based approach to hardware modeling. SystemC is a standard C++
class library that was devised to provide the concurrency, bit-accuracy and timing required in chip
design [4].

Transaction-level modeling (TLM) is an interface modeling methodology used increasingly in
complex SoC design. TLM relies on high-speed processor instruction-set simulators (ISSs) and high-
level, fully functional SystemC/C++ models of the other hardware building blocks. Standardized TLM
modeling rules are critical for ensuring interoperability across platforms, IP (intellectual property) and
design tools. OSCI (Open SystemC Initiative) has been working on a SystemC-based TLM standard
for some time, and the release of TLM 2.0 in January 2009 addresses various software development
needs, as perceived by OSCI. TLM-2 proposes two transaction-level modeling styles: loosely timed
(LT) and approximately timed (AT). The loosely timed (LT) modeling style is more suitable for
software application development, software performance analysis and software architectural analysis.

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 5 of 10

The approximately timed (AT) modeling style is closer to timed behavior, for example, in modeling
network contention and arbitration. As a result, it is more suitable for hardware architectural analysis
and performance verification.

Virtual platforms are usually built by plugging together various TLM models of the hardware
components. These models can originate from different IP sources and model providers. To promote
IP interoperability, the Spirit consortium proposes the IP-XACT standard to facilitate the exchange
among different tools and vendors [5]. The proposal consists of an XML metadata schema and APIs
(application programming interfaces) for describing and manipulating the hardware IPs. An example
of adoption of this standard is the Socrates chip integration platform, which fully supports IP-XACT for
export and import of custom hardware blocks [6].

B. Virtual platform tools providers

The market for virtual platform tools is maturing. A number of EDA vendors, such as Synopsys

and Carbon Design Systems, have gone to market with tools that create such virtual platforms, which
comprise transaction-level models of the hardware.

With the recent acquisitions of CoWare and VaST, Synopsys has become an important provider
of diverse tools for virtual platforms and software development, consistent with its advocacy role with
respect to TLM-2. Innovator is an integrated virtual platform development environment provided by
Synopsys [7]. It supports virtual platform assembly from SystemC TLM-2 hardware models and
software development on top of it. The environment includes the DesignWare System Level Library, a
huge library of transaction-level models for a rich set of components such as processors, memories,
and peripherals, that can be extended by user-defined modules.

Platform Architect is another tool used for virtual platform development, initially developed by
CoWare and recently acquired by Synopsys [7]. The tool has some similarities with Synopsys
Innovator, in the sense that it represents a graphical environment for platform development from
existing TLM hardware components provided in a library. But, compared with Innovator, the
components are at a low level of abstraction, and thus are more suitable for performance estimation
and architecture exploration.

VaST, another recent acquisition of Synopsys, developed the tools CoMET and METeor [7].
CoMET is a system engineering environment which enables system architects to create and analyze
platforms. With cycle-accurate modeling, CoMET produces meaningful quantitative results for both
timing and power dissipation. Architects can address the optimum balance of speed, power and cost
(size). CoMET is used during chip hardware development for co-verification of RTL along with
software and other components modeled at the system level. METeor is a software development
environment which allows embedded software developers to create code using a virtual system
prototype that runs at near real-time speeds on an off-the-shelf PC (personal computer). METeor thus
forms a pure software implementation of a development board and its in-circuit emulator.

OVP (Open Virtual Platform) developed by Imperas, provides ultra-fast, instruction-accurate
virtual platform models [11]. OVP is made up of three main components: APIs that enable modeling
in C of a hardware component, a collection of free open-source processor and peripheral models, and
the OVPsim simulator which executes these models.

Mentor already has a solid market position with Catapult C; this position has been enhanced with
SystemC support [8].

Carbon Design Systems provides solutions to build cycle-accurate IP models for virtual
platforms [9]. The generation of the IP models consists of compiling the IP’s RTL implementation into
a high-speed software model. This illustrates a bottom-up approach, which starts from RTL and goes
to a higher level of abstraction as employed by virtual platforms.

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 6 of 10

The other approach for IP generation is top-down, as proposed by The MathWorks [10]. The
EDA Simulator Link tool from The MathWorks provides glue to link the design of high-level algorithms
with existing virtual platforms. It automatically generates SystemC components from high-level
applications modeled in Simulink. The generated SystemC module has a TLM-2 standard interface,
so that it can be incorporated into a virtual platform which supports such an import. The SystemC
generation also includes testbenches, so that the IP designer can verify the behavior of the generated
TLM component with respect to the modeled functionality in Simulink.

CoFluent Studio is another tool which allows generation of SystemC transactional models from
high-level UML (Unified Modeling Language) descriptions or DSL (Domain-Specific Language)
descriptions [21]. Platforms are built by assembling generic models of universal components, like
processors, integrated circuits, memories, busses, and interfaces. Each generic model provides
variable parameters to easily adjust its behavior and performance characteristics. No instruction set
simulators are used.

C. System-on-Chip design companies

Besides tool providers, System-on-Chip design companies play an important role in determining
the direction and usage of virtual platforms. Most of them have developed their own virtual platform
modeling environments, or they provide models of different IPs with export capabilities to the
previously described virtual platform tools.

ARM provides a set of fast models of various ARM processors and peripherals, which can be
used to create a virtual platform for a custom multi-core chip [23]. The virtual platform design is
available through a block diagram editor, called System Canvas, which has export capability to
SystemC TLM-2. The models are instruction accurate and run at speeds comparable with the actual
hardware boards.

Tensilica proposes a system-level modeling environment of multiprocessor architectures with
XTENSA processors, called XTMP [26]. This includes models of memories, connectors, and queues
that can be interconnected with configured XTENSA processors into an overall system model that
runs either as a SystemC model or as a C/C++ model. The processor and device interfaces are at
transaction level.

An industrial case study of virtual platform utilization for the development of a new hard disk
system is described by Samsung in [12]. According to the authors, the virtual prototype allowed
significant optimization of the software code before the real board was available, resulting in a 50%
improvement in the system performance.

Most mobile platform providers release software development kits (SDKs) which include a
software simulator of the hardware. For instance, Apple released an SDK for iPhone applications [24].
Qualcomm provides an SDK application development environment for the Brew mobile platform [22].
This SDK includes an integrated hardware simulator and a set of programming APIs to access the
different devices of the platform. Samsung has made available a mobile widget SDK for web
developers to build and emulate their applications with the Samsung widgets [25]. Software
developers can test their applications by remotely accessing Samsung’s Virtual Device Lab on current
Samsung phones.

ST Microelectronics is a pioneer of SystemC and contributor to the TLM-2 standard from the
beginning [27]. They use SystemC models of hardware components extensively for both software
design and hardware verification, i.e. network-on-chip SystemC models.

Freescale has developed virtual models to decouple the software and hardware design cycles for
automotive applications [28]. The models simulate the Power Architecture e200 processor cores and
peripherals available for the MPC55xx and MPC56xx processor families.

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 7 of 10

The authors of [29] from Infineon Technologies present a case study of application
development using a virtual platform. The authors implement the receiver part of the DVB-T/H digital
multimedia broadcasting system on a SDR (software-defined radio) platform called MuSIC (multiple
SIMD Cores). They used a cycle accurate SystemC model of the architecture for the application
development and performance analysis.

III. RESEARCH DIRECTIONS AND PERSPECTIVES FOR VIRTUAL PLATFORMS

Current literature includes several academic research directions involving virtual platforms. The

concept of virtual platform appears in most work regarding software development and code
optimization before a hardware board is available [12]. Other research directions use virtual prototype
simulation to perform software profiling, e.g., execution cycles required by a given application and
software performance analysis [13].

A. Techniques of simulation speedup for virtual platforms

Most existing virtual platforms use instruction set simulators for the software execution. This
implies high accuracy and low simulation speed. Moreover, simulation time increases exponentially
with the number of processor cores integrated on the chip and, thus, required to be part of the virtual
platform. As a result, finding new methodologies that speed up simulation but still maintain accurate
performance evaluation represents an important aspect and focus of many ongoing research projects.

Because execution of software on a virtual platform using ISS still suffers from low simulation
speed compared to hardware, many researchers focus on developing new techniques to attain high
simulation speed. In this context, [14] mixes interpreted ISS simulation with compiled ISS simulation
to allow a multiprocessing simulation approach that increases performance.

The authors of [15] describe an ultra-fast ARM and multi-core DSP instruction set simulation
environment based on just-in-time (JIT) translation technology, which refers to dynamic translation of
target instructions (ARM, DSP) to host machine instructions (x86) during the execution.

The authors of [16] present a fast, hybrid simulation framework which allows switching between
native code execution and ISS-based simulation. In this approach, the platform-independent parts of
the software stack are executed directly on the host machine, while the platform-dependent code
executes upon an ISS. Thus, the framework allows debugging a complex application by executing it
natively until the point where the bug is expected, and then executing on the ISS to examine the
detailed software behavior and execution trace stack.

Other research groups focus on integrating ISS within existing design flows, like Ptolemy which is
a design environment that leverages time-approximate cosimulation based on source code estimation
of execution time, and refines its precision using an ISS.

The work presented in [19] proposes cycle-accurate TLM platforms which use native software
execution and timing annotation for accurate performance estimation. The proposed platforms allow
fast simulations because of the native execution of the software, while still capturing low-level
hardware details such as shared resources between processors (i.e., memory mapping, caches, or
synchronization mechanisms).

B. Automatic generation of virtual platform models

The virtual platform has to be available much earlier than the real hardware, in order to allow

concurrent software and hardware design. One of the solutions which address this challenge is

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 8 of 10

automatic generation of the virtual platform models. This permits shortening of design time and
reduction of human coding and modeling errors.

The authors of [17] present automatic generation of virtual execution platforms for the hardware
architecture, to analyze the run-time behavior of an application running on a real-time operating
system, and to accurately estimate performance data.

 [18] proposes automatic software TLM platforms synthesis. Automatic generation of HdS
(hardware-dependent software) is supported, including application code generation, communication
software synthesis, multi-task synthesis and generation of the configuration and makefiles to control
the cross-compilation and linking of the generated code for a particular processor.

C. Virtual platforms at different abstraction levels

Other research works focus on raising the level of abstraction used by the virtual platforms to

higher-level software development platforms [2]. This is a natural direction given the layered structure
of the software stack. The software running on chips is often represented as a stack composed of
three main layers: (i) application, usually expressed as a process network or multithreaded application
description; (ii) OS (operating system) or middleware which provides services to the application layer,
such as threads/tasks scheduling, inter-thread communication and synchronization; and (iii) HAL
(hardware abstraction layer) which permits access to and configuration of the hardware resources,
such as peripherals. These layers are shown in Figure 2.

HAL

OS/ Middleware

Application Threads

Figure 2: Software stack.

Each of these software layers corresponds to a different level of abstraction, and they have
different requirements in terms of design and debug capabilities of the underlying hardware models.
Adopting a multi-layer programming approach facilitates incremental software design and validation.
This consists of using software development platforms with different hardware details depending on
the software component: high-level platforms for the application development, transaction-accurate
platforms for OS and scheduling, and low-level virtual platforms for the full software stack validation.

Furthermore, the multi-layer approach makes the software debug an iterative process, because
the different components need different details in order to be validated. For example, the debug of the
application code running on different processors does not need accurate implementation of the
synchronization protocol between the processors, i.e., detailed models of mailboxes in the
development platform. In the same time, the debug of the threads scheduled by an OS requires this
kind of detail. All these requirements are considered during the abstraction of the architecture in the
platform used at each design step. Thus, depending on the software component to be designed and

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 9 of 10

validated (application threads code, threads scheduling using an OS, HAL integration in the software
stack) the development platform may model only the minimal subset of hardware components
required by the software validation. The rest of the hardware components, which are not relevant for a
specific software component, are abstracted.

In practice, not all of the various development platforms are used by all the design teams,
although many use one or two. The high-level platform is useful for algorithms developers, who
implement new algorithms or optimize existing ones; it can also serve as a functional specification of
the system architecture and design requirements. The transaction-accurate platform models can be
used by system architects – who mostly determine the hardware-software partitioning but do not
require accurate results yet for performance estimation – or by embedded software engineers who
integrate the application threads with the OS, by implementing inter-thread communication,
scheduling and synchronization. The virtual platform is useful for device driver development and
architecture exploration, as well as for verification of RTL design by hardware designers.

REFERENCES

[1] International Technology Roadmap for Semiconductors, Software cost estimation for System-on-Chip, 2007.
[2] K. Popovici, F. Rousseau, A. Jerraya and M. Wolf, Embedded Software Design and Programming of

Multiprocessor System-on-Chip: Simulink and SystemC Case Studies, Springer, 2010.
[3] B. Bailey and G. Martin, ESL Models and Their Application: Electronic System Level Design and Verification in

Practice (Embedded Systems), Springer, 2009.
[4] Open SystemC Initiative, TLM-2.0 User Manual, http://www.systemc.org/downloads/standards.
[5] Spirit, IP-XACT, http://www.spiritconsortium.com.
[6] Duolog Technologies, Socrates chip integration platform, http://www.duolog.com.
[7] Synopsys, Innovator, Platform Architect, CoMET, METeor, http://www.synopsys,com
[8] Mentor Graphics, http://www.mentor.com
[9] Carbon Design Systems, http://carbondesignsystems.com
[10] The MathWorks, EDA Simulator Link, Simulink, http://www.mathworks .com
[11] OVP, http://www.ovpworld.org/
[12] S. Hong, S. Yoo, S. Lee, H. J. Nam, B. S. Yoo, J. Hwang, D. Song, J. Kim, J. Kim, H. S. Jin, K. M. Choi, J. T.

Kong and S. Eo, “Creation and Utilization of a Virtual Platform for Embedded Software Optimization: An Industrial
Case Study”, Proc. IEEE/ACM Intl. Conf. on Hardware/Software Codesign and System Synthesis, 2006, pp. 235-
240.

[13]. M. Oyamada, F.R. Wagner, M. Bonaciu, W. Cesario and A. Jerraya, “Software Performance Estimation in
MPSoC Design”, Proc. ASP-DAC, 2007, pp. 38-43.

[14] W. Qin, J. D’Errico and X. Zhu, “A Multiprocessing Approach to Accelerate Retargetable and Portable Dynamic-
Compiled Instruction-Set Simulation”, Proc. IEEE//ACM Intl. Conf. on Hardware/Software Codesign and System
Synthesis, 2006, pp. 193-198.

[15] S. Singhai, M.Y. Ko, S. Jinturkar, M. Moudgill and J. Glossner, “An Integrated ARM and Multi-Core DSP
Simulator”, Proc. CASES, 2007, pp. 33-37.

[16] J. Ceng, W. Sheng, J. Castrillon, A. Stulova, R. Leupers, G. Ascheid and H. Meyr, ”A High-Level Virtual Platform
for Early MPSoC Software Development”, Proc. IEEE/ACM Intl. Conf. on Hardware/Software Codesign and
System Synthesis, 2009, pp. 11-20.

[17] S. Park, W. Olds, K.G. Shin and S. Wang, “Integrating Virtual Execution Platform for Accurate Analysis in
Distributed Real-Time Control System Development”, Proc. Real-Time Systems Symposium, 2007.

[18] D. D. Gajski, S. Abdi, A. Gertslauer and G. Schirner, Embedded System Design: Modeling, Synthesis and
Verification, Springer, 2009.

[19] P. Gerin, M.M. Hamayun and F. Petrot, “Native MPSoC Co-Simulation Environment for Software Performance
Estimation”, Proc. IEEE/ACM Intl. Conf. on Hardware/Software Codesign and System Synthesis, 2009, pp. 11-20.

[21] CoFluent Design, http://www.cofluentdesign.com
[22] Qualcomm, http://www.qualcomm.com

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 10 of 10

[23] ARM Ltd, http://www.arm.com
[24] Apple, http://www.apple.com
[25] Samsung, http://www.samsung.com
[26] Tensilica, http://www.tensilica.com
[27] F. Ghenassia, Transaction-Level Modeling with SystemC: TLM Concepts and Applications for Embedded

Systems, Springer, 2005.
[28] Freescale, http://www.freescale.com
[29] Y. Jiang, W. Xu, and C. Grassmann, “Implementing a DVB-T/H Receiver on a Software-Defined Radio Platform”,

Intl. J. of Digital Multimedia Broadcasting, February 2009, Article ID 937848.

